Tag Archives: Ingeniería

Sno-cats los vehículos capaces de cruzar por tierra la Antártida

Existe una fotografía que representa de manera perfecta las condiciones extremas y los peligros experimentados durante las expediciones antárticas. La misma fue tomada durante la Expedición Trans-antártica 57/58, el primer cruce exitoso de la Antártida por tierra a través del Polo Sur. Comandada por dos leyendas vivientes: Sir Edmund Hillary, famoso por ser miembro de la primer expedición que llegó a la cima del Everest (aunque existe el misterio de Mallory e Irvine) y Sir Vivian “Bunny” Fuchs, un veterano y temerario explorador. Los primeros equipos llegaron al continente blanco a finales de 1955 y durante todo 1956 se realizarían los preparativos y el entrenamiento para la misión, debiendo pasar todo un año en el cual sufrieron una tragicómica serie de percances y problemas que pusieron en riesgo a la expedición en si misma. En 1957 los 12 integrantes partirían en su aventura histórica.

La travesía en si fue toda una odisea, partiendo desde el Mar de Weddell y llegando a McMurdo, uniendo así las bases Shackleton y Scott y pasando por el Polo Sur (segunda visita al Polo Sur en 46 años, tras que Robert Falcon Scott plantara bandera en el mismo en 1912). Se recorrió un total de 3473 km en 98 días y se sortearon tormentas de nieve, hielos quebradizos así como precipicios y pozos ocultos tapados por la nieve. Tras concretarse la expedición, deberían pasar más de dos décadas para verse nuevamente una travesía exitosa a través del Polo Sur, la expedición de Ranulph Fiennes en 1981 con equipos y vehículos mucho más modernos.

La estrella de la fotografía que mencionábamos al principio de este artículo, y la cual se encuentra en el cabezal de la entrada, es sin lugar a dudas uno de los seis vehículos todo terreno que salvaron a la expedición del fracaso en incontables oportunidades: un Tucker Sno-Cat 743, denominado como Sno-Cat “B”, al cual puede vérselo en todo su esplendor sorteando el traicionero y extremadamente hostil territorio antártico. Los otros cinco vehículos eran 2 Sno-cats, 2 M29 Weasel y 1 tractor Muskeg. De todos los vehículos los más importantes fueron los Sno-cats ya que permitían realizar las tareas de exploración y además transportar toneladas de provisiones, equipamiento científico, antenas e incluso llegando a tener que remolcar a los M29 en varias oportunidades. Originalmente se iban a utilizar 4 Sno-cats, pero durante los preparativos para la misión uno sufrió daños severos en su motor debido a una impericia mecánica.

(El siguiente video es muy recomendable)

Los Sno-Cat son verdaderas joyas de la ingeniería. Con cuatro orugas independientes capaces de funcionar de manera diferencial entre ellas y en distintos ángulos, con las delanteras capaces de funcionar en ángulos superiores a los 90°, estos vehículos pueden cruzar cualquier tipo de terreno. El modelo 743 poseía una velocidad máxima de 25 km/h, y estaban provistos de un motor Chrysler de 134 kW que consumía 70 litros de combustible cada 100 km. Además de ser capaces de sortear terrenos con hielo blando e hielo duro, además de terrenos irregulares y rocosos, esta bestia todo terreno era capaz de llevar una carga de 2,7 toneladas y arrastrar varias más en los denominados “trenes de trineo”.

Los vehículos utilizados por la expedición permanecerían varios años en la Base Scott, para luego ser llevados a distintos museos entre los que se encuentran el Museo Canterbury en Nueva Zelanda y el Museo de Ciencias de Londres.

Continue reading Sno-cats los vehículos capaces de cruzar por tierra la Antártida

Lingotto, la fábrica de Fiat que tenía un circuito de carreras en la azotea

Lingotto fue sin lugar a dudas uno de los edificios más interesantes del mundo. Construido entre 1916 y 1923 en Turín, la planta de estilo futurista se dividía en un sector central donde se ubicaban las materias primas del día y las prensas para fabricar las carrocerías y luego una linea de producción continua en forma de espiral que seguía la silueta ovalada del edificio principal. Inspirada en los innovadores métodos de producción en masa desarrollados por Henry Ford en 1913, la linea de Lingotto funcionaba como una linea de ensamblaje tradicional. Es decir, los vehículos ingresaban a la linea y a medida que avanzaban a través de esta iban siendo completados de manera serial. La diferencia entre el edificio de la Fiat y todas las otras lineas de producción es que esta linea también tenía un componente vertical: la misma era un espiral de 5 pisos. Al llegar al último nivel se accedía a una enorme compuerta desde la cual se salia a la azotea.

Cuando el vehículo llegaba a la azotea el mismo estaba terminado, por lo que sólo quedaba probarlo. Por supuesto que todo estuvo en los planes de Matté Trucco, el arquitecto que construyó la fábrica, y la azotea era un enorme circuito de pruebas continuo en el cual se realizaban todos los controles necesarios. Los extremos del ovalo estaban oportunamente inclinados y además eran curvados, lo que facilitaba doblar a altas velocidades. Durante los tiempos libres los obreros y empleados de la Fiat podían correr carreras utilizando los coches deportivos que estuviesen disponibles al momento.

La fábrica funcionó durante 71 años y en ella se construyeron 81 modelos distintos, cerrando su producción por completo en 1981 debido a que la organización de la fábrica y la distribución del espacio no eran compatibles con las técnicas de producción modernas. Como ocurre con tantos otros bellos edificios de antaño, gran parte de Lingotto fue reconvertida en un centro comercial, otra parte se convirtió en un pequeño hotel y el que era el sector administrativo fue donado a la Universidad de Turín.

Otras pistas de azotea
Lingotto fue la primera pero no la única pista de carreras en una azotea en el mundo. Otros dos ejemplos fueron la fábrica de Imperia en Bélgica, la cual tenía una pista de 1 km de largo que pasaba parcialmente por su azotea y el edificio Edificio Chrysler en la Argentina, el cual tiene una pista de carreras redonda e inclinada en su azotea.

Continue reading Lingotto, la fábrica de Fiat que tenía un circuito de carreras en la azotea

Chicago, la ciudad construida sobre un pantano que fue elevada 2 metros de altura gracias a la ingeniería del siglo XIX

Uno de los mayores problemas que experimentaron las ciudades más antiguas de los Estados Unidos fue que las mismas crecieron a partir de puestos comerciales que priorizaban el acceso a rutas comerciales tanto marítimas como terrestres. A medida que estos puestos se enriquecían y gradualmente se convertían en pueblos y luego en centros urbanos, sus habitantes entonces comenzaban a sufrir los efectos de la pobre ubicación geográfica.

Chicago fue uno de estos casos, una de las urbes más pobladas y ricas de América del Norte que comenzó como una humilde comunidad agrícola fundada en lo que hoy es el estado de Illinois por Jean Baptiste Point du Sable a finales del siglo XVIII cerca de las costas del Lago Michigan, lo que le otorgaba a la comunidad fácil acceso a los Grandes Lagos y así la posibilidad de comercializar rápidamente sus productos con las áreas más desarrolladas y pobladas de los recientemente independizados Estados Unidos. El problema, entonces, sería que justamente lo que fue su mayor ventaja durante sus inicios se convertiría en su mayor pesadilla a mediados del siglo XIX. La ciudad, que ahora era un pulmón industrial y un centro urbano en constante crecimiento, se encontraba a una elevación similar a la del Lago Michigan, por lo que no se podía construir un sistema de cloacas para la eliminación de aguas residuales ya que para colmo de males la ciudad había sido originalmente construida sobre tierras pantanosas.

La falta de un sistema de desagües cloacales y el terreno pantanoso comenzaron a causar estragos en la población local. Brotes de disentería, fiebre tifoidea y cólera eran comunes, hasta que en 1854 una epidemia de cólera causaría la muerte del 6% de la población de la ciudad. Como suele ocurrir con varias tragedias, lo ocurrido abrió los ojos de las autoridades de la ciudad, y con los aportes monetarios de varias empresas y magnates de Chicago prontamente comenzaron un proyecto para salvar a la ciudad de una nueva epidemia. Algo que ciertamente es más fácil decirlo que hacerlo, y durante dos años infinidad de ideas, muchas de estas simplemente imposibles, fueron sugeridas por varios industrialistas e ingenieros para solucionar el problema. La solución llegó dos años más tarde, de la mano del ingeniero Ellis S. Chesbrough: levantar el centro de la ciudad utilizando un ejercito de trabajadores y sistemas mecánicos en serie para elevar varios edificios y calles y así construir el sistema de cloacas.

La tarea fue monumental, y requirió el trabajo de varios miles de obreros y fábricas dedicadas enteramente a construir las herramientas y maquinarias necesarias para la operación. El primer edificio en ser elevado fue un edificio de 750 toneladas largas, hecho enteramente con ladrillos y de 4 pisos de altura. El mismo se utilizó como prueba piloto, delegando la operación a los ingenieros James Brown y James Hollingsworth. Para la prueba piloto se empleó un sistema de gatos de tornillo industriales utilizados para levantar barcos, y su éxito alentó a varias compañías de ingeniería y magnates de la región a apoyar el proyecto. Rápidamente se juntaron los fondos necesarios para elevar a más de 50 edificios en menos de un año, y para 1865 la mayoría de los edificios del centro de la ciudad ya habían sido elevados. Muchos otros incluso fueron también ubicados en un nuevo lugar, cambiándolos de calle o removiéndolos del centro de la ciudad y llevándolos hacia los territorios más elevados al Este de Chicago.

La práctica de elevar edificios se hizo rutina ya para 1860 con docenas de proyectos teniendo lugar al mismo tiempo, y entre los más notorios se encontraban edificios tales como la Tremont House, un mastodonte de 6 pisos y 4000 metros cuadrados, para el cual se utilizó el trabajo de más de 550 hombres y se emplearon 5200 gatos de tornillo industriales debiendo cavarse una serie de trincheras extra bajo el edificio para emplazar refuerzos estructurales. Tras finalizar la obra el edificio había sido elevado mas de 1,8 metros. El proceso era relativamente simple, en primer lugar se realizaba un estudio detallado de las fundaciones, las paredes y columnas; luego se cavaban trincheras por las cuales se pasaban vigas; cada extremo de viga se apoyaba sobre uno o más gatos de tornillo los cuales a su vez se apoyaban sobre una fundación secundaria creada para soportar el peso relativo que dicho gato levantaría, y luego cada gato sería operado por un hombre, que girarían en un grado las palancas de los tornillos al unisono comandados por varios capataces que coordinaban con silbatos cada serie de puja.

Una tragedia que se terminó convirtiendo en una ventaja
La mayoría de los fondos para salvar a la ciudad provinieron de donaciones realizadas por magnates e industrialistas, por lo que las finanzas de la ciudad no se vieron perjudicadas. De hecho, los requerimientos de semejante obra faraónica llevaron a que varias empresas se muden a la ciudad para suministrar los equipos necesarios, recibiendo además un gran influjo de mano de obra calificada que permaneció en la ciudad incluso tras terminada la obra.

La diferencia entre la ingeniería china y la sueca en dos vídeos

Hay algo interesante en los dos vídeos a continuación, algo que demuestra la diferencia entre los paradigmas de ingeniería a gran escala entre entre China, la reina de la economía de escala, y un país tecnológicamente avanzado como Suecia. En el primer video, filmado en Dalian, China, vemos el trabajo de los obreros de la Wilop Forge and Foundry (como muchas otras compañías chinas dedicadas enteramente a la exportación poseen un nombre en inglés más amistoso al comercio internacional) trabajan para convertir un lingote de hierro en una pieza industrial.

En el mismo vemos el proceso de forja de una brida de hierro de tipo cara con resalto, muy posiblemente a ser utilizada en un conducto de bombeo ya que este tipo de bridas se utilizan cuando se requieren uniones que soporten presiones altas. El proceso es rudimentario, utilizando técnicas de más de 100 años y con obreros que si bien puede observarse a simple vista poseen una gran habilidad en su trabajo, carecen de todo tipo de protección auditiva y física.

En el segundo video vemos un trabajo similar realizado en la planta sueca Kihlberg Steel AB especializada en la creación de piezas de hierro y acero para maquinarías industriales utilizando herramientas y estándares de seguridad avanzados.

Claramente vemos la diferencia en tecnología y métodos de producción entre China y Suecia, y si bien en los últimos años China se ha ido armando de varios complejos industriales de alta tecnología y complejidad, Foxconn de hecho ha creado el parque robótico más grande del mundo, la realidad es que los centros de producción rudimentarios como los vistos en el primer vídeo existen de a miles, dejando cualquier ventaja tecnológica y de calidad que una industria como la sueca pueda ofrecer como un factor mucho menos atractivo ante el costo de lo producido en China.

TECOREP, el método único de “de-construcción de rascacielos” que se utiliza en Tokio para demoler edificios de manera ecológica y sin ruido

Desarrollado por la Corporación Taisei éste método de demolición de edificios busca ser completamente ecológico, no generar suciedad ni nubes de polvo y además evitar los ruidos molestos. El método se denomina TECOREP y es realmente una técnica única: la misma se realiza desde adentro hacia afuera, y el edificio en si se va desmontando piso a piso, lo que hace que el mismo aparente ser cada vez más pequeño con cada día de trabajo. El transeúnte promedio quizás nunca se de cuenta que el edificio se encuentra siendo demolido, pero quienes transiten las cercanías diariamente notarán que, con el pasar del tiempo, el edificio es cada vez menos alto.


En el video, hecho a partir de fotografías tomadas durante una semana de trabajo, puede verse el proceso gradual de de-construcción del edificio de 40 pisos Akasaka Prince Hotel en el distrito comercial de Tokio el cual se concretó a un ritmo de 1 piso cada 5 días.

El primer paso consiste en realizar un túnel vertical en el centro del edificio que conecta los pisos superiores con los sótanos. Luego, un complejo sistema de soportes estructurales y grúas para el transporte de escombros es instalado en el piso superior. Éste sistema de transporte de escombros llevará las piezas desmontadas de manera relativamente silenciosa hacia la base para su inmediato retiro del área de trabajo; mientras que los operarios en los pisos superiores irán realizando cortes y perforaciones estratégicas las cuales permiten retirar material estructural sin debilitar la estructura principal de la construcción. Por otra parte, el sistema de soportes se encargará de sostener el peso de la planta alta y el techo a medida que se retiran dichos fragmentos estructurales.

El método, si bien mucho más costoso que las demoliciones tradicionales, fue desarrollado como respuesta a las rigurosas y prohibitivas regulaciones ambientales existentes en Tokio. Regulaciones que hacen que demoler un edificio con explosivos sea una empresa millonaria debido a las altas tarifas ambientales y de prevención disturbios urbanos que se deben pagar para poder obtener los permisos de demolición.

El sultán que intentó destruir las pirámides

Las pirámides son el mayor testamento de la ingeniería egipcia, una obra tan avanzada para su tiempo y tan espectacular que a veces para darnos una idea del contexto de las mismas es útil el recordar que cronológicamente Cleopatra se encuentra más cercana a nuestros días que a la construcción de las pirámides. En efecto, la Reina ptolemaica nació hace unos 2.085 años, más precisamente en enero del año 69 a. C. en Alejandría. La Gran Pirámide de Giza, no obstante, fue construida durante la 4ta Dinastía, hace aproximadamente unos 4.600 años, lo que distancia a la Gran Pirámide de Cleopatra en unos 2.515 años.

Si bien son una maravilla, no todo el mundo a lo largo de la Historia pensó lo mismo, en especial un extremista islámico del siglo XII quien se puso como tarea el destruir las pirámides por ser “instrumentos de idolatría”. Éste extremista no era cualquier persona, sino que se trataba de Al-Aziz Uthman sultán de egipto y el segundo hijo de Saladino, famoso por luchar contra Ricardo Corazón de León durante la Tercera Cruzada

Es así que Al-Aziz comenzó a destruir pirámides menores, siempre ordenando a sus hombres el remover las piedras base de las mismas. Posteriormente comenzó a ocuparse de las pirámides medianas, dañando la pirámide de Micerino, la cual por fortuna no colapsó pero sí quedó con una franja o brecha en una de sus caras producto de la remoción de piedras. Según recuentos de la época los trabajos duraron ocho meses, y el mayor problema con el que se encontraron los mineros contratados para ésta tarea fue que además del arduo trabajo de remover las piedras, al hacerlo las mismas caían enterrándose en la arena lo que llevaba a que el acceso hacia la cara fuese cada vez más difícil. En efecto, los mismos encargados de destruir la pirámide fueron los que le comunicaron al caprichoso líder que la destrucción de la misma sería tan costosa como su construcción.

Sin embargo, el sultán no se contentaba con atacar a las pirámides menores y su meta era el destruir la más grande de todas: la Gran Pirámide de Giza. Al-Aziz entonces comenzó a juntar fondos y a reclutar un verdadero ejército de trabajadores para concretar dicho fin. Durante varios meses los trabajadores intentaron todo tipo de técnicas para remover las grandes y pesadas piedras de la Gran Pirámide, sólo pudiendo llegar a remover fracciones de algunas piedras ubicadas en uno de los vértices. El talento de los ingenieros egipcios pudo más que el fanatismo del extremista, y durante esos meses Al-Aziz despilfarró tanto dinero para tan sólo provocar un daño minúsculo que terminó abandonando por completo su idea de destruir las pirámides.

Artículos relacionados
De como mover un frágil obelisco de 4 mil años.
Desenterrando el obelisco egipcio más grande alguna vez construido.
El hombre que pensó distinto a todos y logró traducir los jeroglíficos egipcios.
El sello que protegió la tumba de Tutankamón durante 3.245 años.

Jones Live Map, el GPS de 1909

Los mapas existen desde tiempos inmemoriales, pero la navegación asistida es un lujo tecnológico de finales del siglo XX, o eso creemos.

Con la invención del automóvil a motor de combustión interna a finales del siglo XIX, el cual permitió comenzar a recorrer largas distancias en relativamente poco tiempo, y a diferencia de los trenes a lugares no predefinidos, los conductores prontamente se encontraron con la problemática de no conocer los lugares a los cuales debían viajar. Anteriormente, con los caballos o carruajes, los viajes de larga distancia eran más lentos y requerían de varios parajes de descanso. Esto como era de esperarse llevó a que se genere un rápido y lucrativo negocio con la creación y venta guías para conductores.

Las mismas generalmente estaban hechas de celulosa y se presentaban en prácticas libretas con los mapas de los territorios aledaños separados en varias hojas y un índice alfabético de las regiones que el volumen en cuestión contenía.

Uno de éstos conductores era el inventor J. W. Jones quien había adquirido un Ford Modelo T y una guía para el camino publicada por Rand McNally. Jones había hecho una pequeña fortuna patentando y vendiendo accesorios para fonógrafos de su invención, y por cuestiones de negocios debía recorrer regularmente los distintos caminos de la Costa Este de los Estados Unidos. No obstante, en el 1909 su empresa comenzó a comercializar un velocímetro deportivo, y Jones vio en la pista de carreras de Indianapolis, la cual se estaba inaugurando ese mismo año, una gran oportunidad de ventas. Allí, entró en contacto con gran cantidad de conductores y todos le comentaron el mismo problema: la incomodidad y el peligro de tener que estar leyendo mapas constantemente. Recordemos que las rutas y calles de principios del siglo XX no estaban listas para los automóviles, y los carteles de tránsito eran casi inexistentes.

Atento ante ésta nueva demanda y posibilidad de negocios Jones puso manos a la obra, y utilizando los recursos de su empresa en menos de 5 meses ya tenía un prototipo: el Jones Live Map.

Este dispositivo constaba de una carcasa con una serie de engranajes la cual se conectaba al eje del cuentakilómetros del automóvil, luego, de entre una serie de discos con información codificada de manera radial, se escogía el disco con la ruta que se iba a transitar y se ubicaba la posición actual del conductor en la posición correspondiente con la de los 180 grados en la circunferencia.

Al transitar, el movimiento del cuentakilómetros accionaba el mecanismo interno del Live Map llevando a que la rueda con información del dispositivo gire en sentido horario. La misma indicaba las condición del camino siguiente (si era de tierra o de piedra), la posición del trayecto en la que el conductor se encontraba en ese momento, puntos de descanso próximos, e indicaciones de navegación muy puntuales y específicas como por ejemplo la de “Doblar a la izquierda al llegar al árbol en el centro del camino pasando la iglesia” que se encontraba en Vallonia, en la posición 80 del camino entre Indinapolis y French Lick.

El dispositivo se vendería con éxito, existiendo cientos de rutas para el 2020 y la capacidad de recorrer los Estados Unidos de punta a punta, saliendo de Nueva York y llegando a Los Angeles utilizando siempre un disco de Live Map en todo punto del camino. No obstante, la necesidad de actualizar los mapas constantemente, sobretodo a mediado de los 20s cuando los distintos estados comenzaron una campaña de re-organización masiva de sus rutas con un foco en los automóviles, la pavimentación a nivel estatal y nacional y los carteles viales que comenzaron a hacerse visibles en todas las ciudades, llevaron a que el Mapa de Jones pierda su gracia y prontamente pase al olvido.

Artículos relacionados
Un mensaje que cambiaría al mundo, el primer mensaje de telégrafo.
La fotografía más antigua (que se conserva, ya que la primer fotografía de la historia fue tomada por el gran Athanasius Kircher en el siglo XVII)
La primer película de la historia (video completo)
La grabación musical más antigua que se conserva.
Voz del pasado, la lucha por recuperar la grabación más antigua de la voz humana.
La Internet del siglo XIX.

Cómo los persas hacían toneladas de hielo y congelaban carne hace 2400 años

Algunas comodidades son ciertamente difíciles de imaginar en los tiempos anteriores a los dispositivos eléctricos, no obstante, lo anterior no quiere decir que no hayan existido. El hielo y los alimentos congelados son algunas de estas comodidades, y la manera en la que las distintas culturas procuraban la producción de hielo es asombrosa.

En Persia, región del mundo reconocida por sus veranos calientes e inclementes, el hielo era considerado un bien de lujo y extremadamente preciado. Pero Persia era también una cultura extremadamente rica y afluente, por lo que con el tiempo gracias al ingenio de los intelectuales que abundaban por la región, se crearon los yakhchal (pozos de hielo). Si bien éstas eran elaboradas construcciones y muy costosas, su valor comercial y símbolo de estatus eran tales que se llegaron a construir miles. Todo terrateniente o personaje acaudalado debía tener su yakhchal.

El funcionamiento de los mismos se basa en refrigeración por evaporación y consta de dos partes, la de producción de hielo y la de almacenamiento. Generalmente al yakhchal se en si se lo asocia con la estructura de almacenamiento la cual se basa a partir de un domo espiralado y una cámara subterránea.

La sección de producción de hielo se mantiene aledaña al domo, y requiere de tres partes: una pared principal ubicada en dirección este-oeste, un pequeño acueducto subterráneo con flujo sur-norte el cual podía redirigirse de manera controlada a tres destinos distintos y una serie de canaletas de 40 a 50 centímetros de profundidad alimentadas temporalmente hasta llenarlas por uno de los flujos del acueducto, generalmente protegidas por una segunda pared y un techo. Durante enero, el mes más frío del invierno (mes de la producción de hielo, con temperaturas que van de los 7°C a los 13°C durante el día y a los cero grados o bajo cero durante la noche), se llenan dichas canaletas, las cuales fueron resguardas del sol durante el día por la sombra de las paredes manteniendo la piedra bien fría. La piedra es a su vez enfriada por un proceso secundario, un segundo flujo del acueducto que se abre durante todo el mes de producción y que toca la base de la piedra de cada canaleta.

Este proceso es gradual, y lleva varios días, con el grosor de la capa de hielo creciendo cada noche desde el piso de las canaletas. Durante los primeros días se busca que se genere esa primera capa de hielo, protegiendo además las canaletas del sol; sobretodo la piedra de las canaletas, la cual debe estar fría y enfriarse aun más durante la noche. Al cabo de un tiempo, los bloques de hielo son cortados y llevados a la cámara de almacenamiento del yakhchal, la cual es a su vez enfriada por un tercer y último flujo proveniente del acueducto que toca las paredes internas de la cámara por fuera. Nada se desperdiciaba, esos flujos de agua utilizados para enfriar la piedra eran a su vez redirigidos a un acueducto vecino o utilizados para regar cultivos.

Una vez con el yakhchal lleno de hielo, en las partes superiores de la cámara se solía poner carnes y comida, las cuales quedaban congeladas, así, los yakhchal brindaban hielo y comida fría durante los calurosos veranos persas.

Sólo podemos imaginar la sorpresa de los viajantes extranjeros cuando visitaban una ciudad persa y eran invitados con hielo en pleno verano.

Los qanat
Lo más interesante es que esto pudo ser posible en Persia gracias a su avanzado nivel de civilización y desarrollo. El gobierno persa estaba obligado a hacer el trabajo duro, construir los qanat (acueductos subterráneos) desde la montaña hacia la ciudad, y extensiones a baños y cisternas públicas. Luego, la gente acaudalada podía si quería realizar una extensión hacia sus tierras utilizando su propio dinero. Por cierto, las cisternas públicas, llamadas ab anbar eran otra maravilla de la ingeniería, con un sistema de captura de aire para mantener el agua ofrecida fría.

Los pilotos soviéticos que se obsesionaron con llevar sus MiGs a la mayor altura posible

Al terminar la Segunda Guerra, los soviéticos quedaron estigmatizados por el hecho de tener que depender de motores de avión diseñados y fabricados por los Británicos, incluso el MiG-15, un avión producido mucho tiempo después de terminada la guerra y que hizo estragos en Corea, utilizaba un motor copia del Rolls-Royce RB.41 Nene. Esto no podía seguir así, y el liderazgo soviético lo sabía muy bien, por lo que armaron a los legendarios ingenieros Mikoyan y Gurevich con todos los recursos industriales y económicos y el personal necesarios para avanzar la tecnología aeronáutica soviética a nuevos niveles, y éstos así lo hicieron (de hecho el prefijo MiG viene de “Mikoyan y Gurevich”). En poco más de 15 años la Unión Soviética pasó de utilizar motores copiados a producir los mejores aviones de combate del mundo, la joya de la corona fue el MiG-25, el avión que simplemente aplastó todos los récords para aviones de combate habidos y por haber: El récord de velocidad con carga útil (misiles) en 1965 llegando a unos 2,319.12 km/h, el récord de velocidad sin carga útil en 1967 tocando los 2,981.5 km/h, el primer jet de combate en romper la barrera de altura de los 20 kilómetros y luego de los 30 kilómetros en 1973, el récord de velocidad en alcanzar los 25 kilómetros de altura en 1973, entre varios otros. En total el MiG-25 demolería un total de 29 récords mundiales, muchos de los cuales aun se mantinen.

Curvatura de la tierra vista desde un MiG-25 volando a 28.117,8 metros de altura.

Eventualmente, entre los pilotos soviéticos, comenzó una competencia por ver quien podía llevar su MiG-25 a mayor altura, y esto no es tan simple como apuntar el avión hacia arriba y acelerar, requiere de maniobras muy complejas para maximizar el punto vértice de la altura máxima alcanzada una vez que la trayectoria de vuelo se vuelve parabólica al alcanzar cierta altura con poca densidad de aire y el motor de reacción experimenta lo que se denomina como apagón de llama, fenómeno en el cual se apaga la llama en la cámara de combustión del motor ya sea por la falta de oxígeno o la baja densidad de aire que lleva a la pérdida del compresor.

Es así que un día 31 de agosto de 1977 Alexander Fedotov, quien ya había llevado su avión al límite varias veces con anterioridad, llevó su avión a romper el mayor récord de altura alguna vez alcanzado por un jet de combate, y que aun, al día de hoy casi 40 años después, permanece invicto. Fedotov voló un MiG-25RB experimental con un motor R15BF2-300 a una velocidad y trayectoria tal en la cual, a pesar que su motor se rindió a los 30 mil metros de altura, su avión llegó a tocar los 37.650 metros de altura, unos 37,6 kilómetros.

Todo un testamento a la ingeniería soviética.

Y los MiG-29 para los turistas
Hoy en día si se cuenta con una pequeña fortuna destinada al ocio se pueden contratar pilotos veteranos rusos y MiG-29s para viajar a grandes alturas y ver la curvatura terrestre.


El vehículo de tierra rápido de la historia

Construido por la NASA este trineo deslizador impulsado a cohete (no tenía ruedas sino una base similar a dos perfiles U) alcanzó una velocidad de mach 8,5 es decir, unos 10.325 kilómetros por hora en la base Holloman. La base Holloman no es cualquier otra base, en la misma tienen el dispositivo de pruebas de alta velocidad más elaborado y avanzado del mundo, el cual puede simular lluvias, útil para probar como lás cabinas de los aviones supersónicos de la USAF van a reaccionar mientras viajan a velocidades supersónicas bajo la lluvia, e incluso un sistema de amortiguadores acuáticos cuando el vehículo en cuestión se desea recuperar intacto. Esta pista es básicamente un sistema de rieles diseñado en parte por el mismo John Stapp. Durante los últimos años la base añadió otro sistema de rieles, éste ultimo de tipo maglev, para pruebas hipersónicas (velocidades superiores a mach 5).

Nota: La base Holloman ha probado otro vehículo un poco más rápido que el anterior, el cual superó a la prueba de la NASA por unos pocos km/h (relativamente nada en comparación). No obstante, el material filmográfico del mismo es muy escaso y de mala calidad.

La antropometría y el ingeniero que parametrizó al ser humano para que las acciones y la interacción con los objetos resulten más simples

Hombre de vitruvioDefinir la altura estándar de una puerta parece algo muy simple: hacerla lo suficientemente alta como para que pasen por la misma las personas más altas dentro de un rango razonable que acapare al 99% de la población, pero lo suficientemente baja para que sea práctica estructuralmente. Eso resulta simple de comprender; pero qué acerca de, por ejemplo, la altura de una silla en relación a un escritorio y sus cajones, ciertamente debe existir una relación matemático estadística que enlace y determine los tamaños y distancias para que dichos elementos sean cómodos como para que el promedio de los seres humanos, y sus rangos de variaciones, puedan realizar una escritura confortable sobre la superficie del escritorio como a su vez poseer un fácil y rápido acceso a los cajones del mismo sin necesidad de mover el tronco de su cuerpo, todo perfectamente al alcance de nuestros brazos; o tal vez cuando nos sentamos en un automóvil, y simplemente con un movimiento de brazos podemos tomar el ojal del cinturón de seguridad e insertarlo en la traba con un simple movimiento que tampoco requiere mover el tronco del cuerpo para la absoluta mayoría de la población adulta.

Todo esto hoy lo damos por sentado y resulta tan básico, tan elemental y dado por hecho que nunca pensamos que esto, en realidad, es el producto de siglos de mediciones y estudios. Primero desde el saber común con tablas de medidas para ciertos objetos, y luego, con la llegada de la modernidad, del diseño industrial y el estudio científico de la biomecánica humana.

Los pioneros
Tabla de medidasPrimeramente ésta ciencia empezó como una técnica, midiendo la disposición y distancia de los elementos, por ejemplo, Hipócrates dio gran importancia en la cirugía al acceso y distancia del instrumental, Taylor durante la revolución industrial presto principal atención a mecanizar movimientos cortos, simples y prácticos durante el trabajo, y ciertamente infinidad de gremios a lo largo de los siglos desarrollaron sus propias “tablas de medidas” como la que puede verse hacia la derecha, utilizada por carpinteros del mundo angloparlante para determinar el tamaño y la distancia óptimos de distintos muebles para que estos sean prácticos y convenientes.

EL ModulorNo obstante, no fue hasta la llegada del arquitecto Charles-Édouard Jeanneret-Gris, mejor conocido como Le Corbusier, en que las dimensiones y movimientos humanos se comenzaron a considerar como relaciones matemáticas aplicables. Para esto creó el Modulor, una serie de escalas antropométricas que harmonizaban las dimensiones humanas con la arquitectura. Con éste, se podían dimensionar objetos tanto arquitectónicos como mobiliarios de manera tal que posean una mayor armonía con las dimensiones y movimientos humanos. El mismo empleaba fuertemente las series de Fibonacci y, a grosso modo, el sistema partía desde la mano levantada del hombre (226cm) y desde su ombligo (113cm). A partir de la primer dimensión se suma y se resta sucesivamente en relación a la sección áurea y se obtiene la serie azul; con el mismo proceso, pero a partir de la segunda medida, se obtiene la serie roja. Esto permite obtener miles de combinaciones aplicables tanto a un simple mueble como a un edificio entero.
EL Modulor

El hombre que parametrizó al ser humano
Estudios de Henry DreyfussEl problema con el Modulor es que si bien fue un adelanto no era un estudio científico, y se preocupaba más por la estética y el arte que el rigor matemático. No obstante, esto lo solucionaría el industrial Henry Dreyfuss a mediados del siglo XX. Con éste fin publicaría en 1960 una influyente obra denominada Measure of Man: Human Factors in Design (La medida del hombre: Factores humanos en el diseño), una obra culmine del diseño industrial; en la que se interpretan las relaciones ergonómicas como si se tratase de “ingeniería humana”. La antropometría deja de ser el paradigma principal siendo reemplazada por la ergonomía, es decir, las medidas en si dejaban de importar y las relaciones de movimientos y posiciones eran los factores determinantes

Estudios de Henry Dreyfuss
Estudios de Henry DreyfussDreyfuss crearía dos modelos estandarizados Joe y Josephine, todas sus medidas no estarían determinadas por valores absolutos sino que representarían porcentajes interrelacionados, por lo que al ajustar ciertas variables los modelos podían representar personas de distintos tamaños, así como niños, personas con distintos índices de masa corporal e incluso personas en sillas de ruedas. La biomecánica jugaba un rol fundamental en dichos modelos, con las articulaciones y sus rangos de acción definidos en arcos proyectantes de gran información visual para quien emplee el modelo.

Estudios de Henry DreyfussLas dimensiones, los rangos de movimiento y rotación del cuerpo dejan de ser valores individuales y pasan a representar relaciones interdependientes, jerarquizadas. Un movimiento de la rodillas alterará los valores asignados a su respectivo pie, así como el área de acción del modelo. Más importante aun es la tabulación de valores aplicables a distintas acciones. Tablas para el modelo sentado, tablas para el modelo estático, tablas para el modelo en movimiento, etc.

Estudios de Henry Dreyfuss

Esta obra marcó un antes y un después, y ciertamente dejó por sentado que en el diseño industrial se deben adaptar los objetos a la persona y no la persona a los objetos, dando paso a los diseños altamente ergonómicos que disfrutamos hoy en día.

Los impresionantes andamiajes hongkonéses de bambú de 15 pisos de altura

Andamiso de bambú en Hong KongVer obreros trabajando en andamiajes de acero de varios pisos de altura es ya un problema si tienes vértigo, ver obreros trabajando en andamiajes hechos con bambú sujetados con sogas a decenas de metros de altura moviéndose con agilidad en la estructura como si fuese arañas en su tela es otra historia. Pero esto es así, y no es para nada inseguro, ya que es una técnica de construcción utilizada en Asia del Este, y sobretodo en Hong Kong, desde tiempos ancestrales; abalada incluso por calificadoras internacionales por lo que dichos andamiajes pueden utilizarse perfectamente en proyectos de gran envergadura como rascacielos y todo tipo de edificios de gran escala y porte.

Andamiso de bambú en Hong Kong

Denominados como “las arañas” los constructores de estos andamiajes no son para nada improvisados, y requieren de años de aprendizaje bajo un mentor antes de que se les permita trabajar solos, siempre con otro obrero que le de una segunda mirada a los nudos y uniones entre barras de bambú, y es que de hecho hay trabajadores enteramente especializados en alzar éstas colosales estructuras de madera. No sólo de nudos y uniones se trata, sino que además los expertos deben asegurar que el bambú no entre en contacto con el concreto.

Andamios de bambú en Hong KongEl bambú es quizás uno de los mejores recursos históricos de las culturas de Asia. No sólo crece extremadamente rápido y en altísima densidad, es además resistente a los insectos y las plagas. Siendo también una caña altamente fibrosa de increíble flexibilidad, resistencia y poco peso. Es debido a dicho poco peso que, a diferencia de los andamios de metal, con el bambú se pueden construir andamiajes invertidos, es decir, de arriba para abajo.

Andamiso de bambú en Hong Kong

Andamiso de bambú en Hong KongDesafortunadamente, los tiempos modernos han hecho que muchos aspirantes al oficio opten por trabajos que requieren menor tiempo de formación, algo muy comprensible en las sociedades actuales del mundo entero donde las condiciones de vida cada vez son más exigentes. Por esta razón, y a pesar de ser la técnica preferida por muchos constructores, cada vez es más difícil encontrar los expertos necesarios para alzar estas estructuras, las cuales son mucho más económicas y fácil de transportar que las de acero.

Aunque cueste creerlo, las caídas son muy raras y casi inexistentes debido.

Las rutas musicales de Hokkaido

Carreteras musicales del JapónEn Anfrix ya habíamos hablado de esculturas musicales en el pasado, pero en Japón se ha llevado este concepto al extremo. Construidos por ingenieros del Instituto de Investigación Industrial de Hokkaido las “carreteras melódicas“ son caminos en los cuales se han creado distintos patrones a manera de surcos y huecos que, al chocar con el aire que acarrea la superficie de un automóvil al desplazarse a cierta velocidad, producen distintos tipos de melodías y tonos. Si bien en un principio solo podían verse en la isla norteña, su popularidad los ha extendido por todo el Japón e incluso otros países como los Estados Unidos.

Si bien el concepto es un tanto diferente, otra obra que esconde una melodía musical en surcos es la capilla de Rosslyn, y su melodía permaneció escondida durante mas de 500 años.