Category Archives: Ciencia

Kudzu, la planta japonesa que devora el sur de los Estados Unidos

Hace un tiempo habíamos hablado sobre cómo las regiones evacuadas de Fukushima han sido rápidamente cubiertas por la vegetación local. Si bien esto es común, la naturaleza es de hecho implacable reapropiando espacios, lo llamativo era la velocidad con la que todo ocurrió. Esto se debe principalmente a un tipo de planta: el Kudzu.

El Kudzu es una planta nativa del sudeste asiático del género de las Pueraria. Las mismas son enredaderas perennes, resistentes a los insectos y relativamente tolerantes al frío. Se reproducen principalmente de manera asexual mediante esquejes producidos por sus estolones, los cuales echarán raíces y desde allí comenzarán su propia expansión. En otras palabras, la planta irá constantemente formando nuevos nodos, por lo que necesita expandirse rápidamente buscando espacios para dichos nodos. Pero lo que hace al kudzu una especie tan invasiva es que esta también puede reproducirse mediante semillas transportadas por el aire. Es decir, se expande rápidamente por el suelo y además puede extenderse a través de grandes distancias geográficas. Como si lo anterior fuese poco, en la década del 90 se descubrió que incluso si se arranca la planta su raíz puede permanecer durmiente durante más de tres años en el suelo y luego brotar nuevamente.

En el 1876 durante la Exposición del Centenario en Filadelfia, Pensilvania en la cual se festejaban los 100 años de independencia de los Estados Unidos, el pabellón de Japón constaba de un bello jardín japonés adornado con plantas y árboles del país asiático. Uno de estos vegetales traídos a la exposición fue el kudzu, y rápidamente capturó el interés de los visitantes quienes fueron cautivados por su aroma y el uso artístico que se le había dado para cubrir puentes y estructuras del jardín. La planta se volvería relativamente popular en los jardines y parques de Pensilvania.

No obstante, durante la década del 40 el problema de la erosión del suelo a causa del cultivo incesante del algodón en los territorios del sur de los Estados Unidos se había vuelto un problema de estado. Lo que llevó al presidente Franklin D. Roosevelt a iniciar una campaña federal para tirar semillas de kudzu por todo el sur, esperando que su rápido crecimiento ayude a sostener el suelo. Si bien en efecto el kudzu es muy efectivo para combatir la erosión del suelo y también sirve como fuente de alimento para el ganado, el clima del sur de los Estados Unidos resultó ser mucho más favorable que el clima de Pensilvania, un estado del norte. Este clima soleado y los suelos ricos en minerales de la región hicieron que la planta comenzara a expandirse mucho más rápido que en Asia o Pensilvania. En el punto más crítico de la “epidemia del kudzu” este llegó a cubrir una extensión de 610 km2 por año. Cientos de millones de dólares fueron invertidos para detener la expansión violenta de esta especie invasiva, pero nada parecía funcionar ya que el uso de herbicidas estaba restringido debido a que la expansión se daba principalmente en territorios agrarios y poblaciones rurales y la planta parecía tener una resistencia natural contra los herbicidas de menor intensidad. De hecho, el Dr. James Miller, contratado por el Servicio Forestal de los Estados Unidos, descubrió que de los 6 herbicidas aprobados por el gobierno al momento del estudio, la planta era inmune a tres, poco afectada por dos y el último incluso la ayudaba a crecer más rápido. La solución llegó desde China y Japón: resulta que el kudzu tiene un enemigo natural: las cabras. Por lo que durante los años 70 y 80 comenzaron a soltarse decenas de miles de cabras de angora en las áreas más afectadas para así combatir el crecimiento sin control de esta especie.


(Fe de errata, en la imagen pueden verse ovejas devorando kudzu.)

De todas maneras, y si bien las cabras han ayudado en los Estados Unidos, todavía no hay una solución definitiva y en el 2009 se ha detectado la existencia de kudzu en Canada y Australia.

Encendiendo bengalas dentro de cavernas glaciares, un espectáculo único

Encender una bengala dentro de una caverna de hielo debe ser uno de los espectáculos visuales más impresionantes en la tierra. La luz de las mismas, constantemente variando en intensidad, es refractada a través de las varias capas de hielo ricas en minerales y cuyas densidades varían a medida que las mismas se hacen más antiguas, formando así un verdadero paisaje de otro mundo.

Las cavernas de Alaska

Las siguientes imágenes fueron realizadas como parte de un proyecto fotográfico durante el 2012 en una caverna de hielo en Alaska formada en el 2010, es decir una caverna en pleno proceso de formación. Algo peligroso ya que la misma está formada a partir de “hielo nuevo” y carece de capas compactadas. Su estabilidad estructural es un acertijo ya que es un proceso en formación.

Eslovenia
Las cavernas de hielo de Eslovenia son particularmente limpias. Es decir, el hielo que las forma no posee una concentración de minerales elevada, por lo que su color es un azul puro e intenso.

Islandia

Esta es la misma fotografía utilizada en el cabezal de la entrada. La misma fue tomada en las cavernas de hielo de Islandia por el fotógrafo y naturalista Brynjar Agústsson. Las cavernas glaciales de Islandia son particularmente interesantes debido a su antigüedad y la cantidad de minerales atrapados en el hielo producto de las varias y densas erupciones volcánicas que azotaron a esta isla al borde del ártico a lo largo de los milenios.

Rusia
Las Cavernas Arcoiris en Rusia, llamadas de esta manera debido a los distintos colores que poseen sus hielos a causa de los depósitos minerales que los componen, son otro de los lugares espectaculares y relativamente desconocidos del planeta tierra debido a su extremadamente difícil acceso en el este de Russia. Durante cientos de miles de años estas cavernas acumularon los minerales expulsados por el volcán Mutnovsky en Kamchatka.

Continue reading Encendiendo bengalas dentro de cavernas glaciares, un espectáculo único

La cautivadora belleza de las solarigrafias

La solarigrafia es una técnica de fotografía de larga exposición en la cual se imprime en papel fotográfico las distintas trayectorias del sol a través del cielo durante las estaciones del año. Para la misma generalmente se suelen utilizar cámaras de tipo estenopeicas, es decir sin lente y un cuerpo el cual consta de una caja de estanco con un orificio o estenopo por el cual ingresa la luz quedando plasmada en un material fotosensible. En efecto un principio y mecanismo muy similar al utilizado en las cámaras oscuras, las primeras cámaras en la historia.

Tras seis meses o un año la luz que ingresa a través del orificio irá marcando en el papel fotográfico la trayectoria del sol entre sus puntos máximo y mínimo y todos los puntos intermedios entre estos. Un detalle interesante a notar es que el color de cada trayectoria es el color del cielo durante el período de tiempo de esa trayectoria en cuestión, por lo que las solarigrafias no sólo indican el trayecto del sol sino que además son una buena indicación del color del cielo durante cada período de tiempo.

Como puede observarse en la imagen hacia la derecha, las cámaras utilizadas son simples y fáciles de construir y generalmente se construyen utilizando latas. El único desafío técnico presentado por las mismas consta en calcular el diámetro óptimo del orificio o estenopo y la altura a la cual debe ubicarse la cámara para capturar los puntos máximos y mínimos de la trayectoria.

Es una técnica tanto artística como didáctica ya que permite visualizar de manera clara y sencilla la trayectoria de sol en el cielo sin necesitar de una mayor explicación.

Fotografías del solsticio
Un tipo de fotografía similar en temática pero muy distinta en su técnica son las fotografías del solsticio de verano. La técnica en si es mucho más simple y no se necesita construir una cámara especial, simplemente se toma una fotografía por hora desde las 6 AM hasta las 6 PM y luego se realiza una composición de todas las imágenes.

En esta imagen realizada en Noruega vemos al sol transitar directamente sobre el Trópico de cáncer.

Artículos relacionados
Fotografías pioneras, la primer fotografía en la Historia.

Los cosmonautas que quedaron varados durante meses en la Mir tras la disolución de la Unión Soviética

Son conocidas las historias de personas que quedan varadas en aeropuertos tras que el estado al cual pertenecían entra en conflicto o simplemente desaparece debido a colapsos geopolíticos, guerras u otros problemas. Incluso existe una película protagonizada por Tom Hanks, The Terminal, la cual está basada en la larga estadía del refugiado iraní Mehran Karimi Nasseri en el aeropuerto Charles de Gaulle.

Si bien las historias anteriores son interesantes, lo que ocurrió a principios de la década del 90 en la estación espacial Mir es simplemente espectacular. Todo tuvo lugar el 26 de diciembre de 1991 cuando la Declaración 142-Н, la cual formalizaba lo pactado en el Tratado de Belavezha, puso fin formal a la Unión Soviética como nación. En la estación espacial Mir se encontraban el comandante Alexander Volkov y Sergei Krikalev, ingeniero mecánico prodigio y cosmonauta veterano quien entrenó para volar en el proyecto Buran (el transbordador soviético) y quien ya había realizado varias misiones a la Mir durante finales de los años 80, incluidas largas actividades extravehículares con el fin de instalar módulos extra en la estación.

El comandante recibió ese mismo día la orden, de “mantenerse alerta ante cambios repentinos”. Todo era pleno desconcierto ya que el programa espacial soviético no estaba centralizado, sino que por el contrario varias de sus instalaciones y talento humano así como depósitos, estaciones de control e incluso fábricas y cosmódromos se encontraban distribuidas en muchas de las 11 repúblicas que formaban la que fue la Unión Soviética. El control de la estación se encontraba en Rusia, pero el cosmódromo al cual retornaban las naves Soyuz desde la estación, el cosmódromo de Baikonur, estaba en Kazajistán. Peor aún, las fábricas y depósitos de los motores de cohetes estaban en su mayor parte ubicadas en Ucrania. Traer a los cosmonautas de vuelta probó ser un verdadero laberinto diplomático.

Krikalev había llegado a la estación en la misión TM-12 la cual tuvo lugar en mayo de 1991. Si bien debió volver en julio de ese mismo año, la inestabilidad política que la Unión Soviética se encontraba experimentando llevó a que se cancelen vuelos, por lo que el cosmonauta debió quedarse hasta octubre mientras que sus compañeros de la TM-12, considerados como personal no-crítico, retornaron a tierra. En teoría su reemplazo debió llegar durante la misión TM-13 comandada por Alexander Volkov. No obstante, el ingeniero de la TM-13, Toktar Aubakirov, fue enviado específicamente a reparar un subsistema de la estación sobre el cual era experto, pero éste no había sido entrenado para permanecer en el espacio durante períodos prolongados de tiempo por lo que pocos días más tarde la nave de retorno partió de la estación llevando a los cosmonautas de la TM-13 a la tierra y dejando a Volkov y a Krikalev en la estación, en efecto, ahora se encontraban solos en la estación y sin saber a ciencia cierta qué estaba ocurriendo en tierra y el alboroto político que acontecía a lo largo y ancho de la en unos meses sería la ex-Unión Soviética. Ni siquiera sabían exactamente qué país los debía rescatar, ya que Volkov era ucraniano y Krikalev ruso.

Tras recibir en diciembre el comunicado de disolución y durante los siguiente tres meses de incertidumbre, ambos realizaron varias misiones de mantenimiento de emergencia, incluidas varias caminatas espaciales y reparaciones improvisadas. Lo más interesante durante éste tiempo tuvo lugar cuando rompieron el protocolo varias veces para utilizar la radio de la estación y comunicarse con radioaficionados en tierra para obtener noticias ya que el control de la misión no les daba información alguna de lo que estaba ocurriendo.

Ambos cosmonautas finalmente lograron retornar a la tierra el 25 de marzo de 1992, Krikalev nunca se cansó del espacio, y meses más tarde ya se encontraba entrenando para las misiones de cooperación entre la NASA y la Federación Rusa, incluidas varias misiones de transbordador y la histórica Expedición 1, la primer misión a la Estación Espacial Internacional.

El sello que protegió la tumba de Tutankamón durante 3.245 años

La tumba del farón Tutankamón es una de las más raras alguna vez encontradas por los arqueólogos en Egipto. La misma consta de 5 sarcófagos en series, en los cuales se encuentran a su vez cinco altares con ofrendas y pasajes. Al ingresar al cuarto sarcófago además de las ofrendas y los cuerpos momificados de personajes menores pero cercanos al faraón e incluso sirvientes cuya tarea era la de servirle en el más allá, Howard Carter y su equipo hallaron en 1922 y tras una seguidilla de problemas tanto técnicos como económicos durante el principio de su expedición una gran compuerta la cual había permanecido escondida por miles de años. La misma aseguraba el ingreso con un singular sello puesto por los sacerdotes encargados de los ritos funerarios y el cual permaneció intacto por 3.245 años. El mismo constaba de una cuerda anudada y un sello de arcilla conteniendo la figura del dios chacal Anubis. Patrón de los embalsamadores y dios de la muerte,

El hallazgo fue espectacular. Si bien los sarcófagos anteriores fueron explorados con anterioridad en dos oportunidades e incluso los dos primeros de la serie saqueados en el pasado, la puerta de acceso al sarcófago de Tutankamón fue protegida por una serendipia del destino. Parte de la tumba de Ramsés IV, la cual se encontraba en el nivel directamente superior a la de Tutankamón, colapsó y ocultó con sus escombros la puerta de acceso. Tras remover los escombros, Carter rompió el sello e ingreso al quinto y último sarcófago encontrándose con el tesoro egipcio más espectacular de todos los tiempos; todo quedando capturado por la lente del fotógrafo de la expedición, Harry Burton.

Artículos relacionados
El mecanismo de Antiquerra, la computadora más antigua de la historia.
De como mover un frágil obelisco de 4 mil años.
Desenterrando el obelisco egipcio más grande alguna vez construido.
El hombre que pensó distinto a todos y logró traducir los jeroglíficos egipcios.
El sultán que intentó destruir las pirámides.

El sombrerero enloquecido por los vapores de mercurio que fue la inspiración de Lewis Carroll

Alice’s Adventures in Wonderland de Lewis Carroll es uno de esos libros con múltiples interpretaciones dependiendo de la edad en la que se lo lea. Repleto de eventos fantásticos y personajes extraños es el Sombrerero Loco uno de los personajes más famosos e inolvidables no sólo de ésta obra sino de la literatura de fantasía en su conjunto. Su singular excentricidad, locura que a la vez parece por momentos un tanto cuerda y carisma inagotable son algunas de las características que hacen de éste un personaje tan entretenido. Si bien el libro en sí es una obra digna de una imaginación única y privilegiada, curiosamente Carroll no debió de haberse esforzado mucho a la hora de crear a éste personaje, ya que de hecho los sombrereros de su época estaban todos locos.

El proceso de curación que requerían los diferentes materiales que conformaban los sombreros de copa de antaño requería, entre otros materiales, la utilización de nitrato de mercurio. Si les llegaba el éxito, más sombreros debían producir y por ende respirar más y más vapor de mercurio en su trabajo, volviéndose así completamente locos y excéntricos. Por dicha razón la población en general comenzó a asumir que el arte de realizar sombreros era “un oficio de locos”. Muchos de éstos sombrereros además terminaban padeciendo una condición denominada como “hatters’ shakes” (temblores de sombrereros) causada por el daño nervioso que causaba el vapor de mercurio. No fue sino hasta 1869 que la Academia Nacional de Ciencias francesa describió el problema y sus causas, y recién en 1898 comenzaron a implementarse las primeras regulaciones obligando a los sombrereros tanto artesanales como las manufactureras industriales de sombreros a utilizar protección respiratoria durante el proceso de curado de materiales.

El verdadero sombrero loco, fue de hecho un sombrerero loco en la vida real. Theophilus Carter fue un singular personaje que trabajaba principalmente en Oxford y que solía pararse en la puerta de su negocio vistiendo un llamativo sombrero de copa y gritándole a todo el mundo que pasara cerca de su establecimiento. Theophilus era una bomba de tiempo, ya que no siempre enloquecía, sino que a veces se trenzaba en intensos debates sobre varios temas de los cuales tenía un conocimiento privilegiado, por lo que mucha gente corría el riesgo y se acercaba a hablarle. No sólo su presencia era llamativa, sino sus invenciones y maquinarías eran realmente asombrosas, entre ellas una “cama despertador” que al momento de despertar a su “víctima” ésta accionaba un mecanismo inclinado que tiraba a quien esté durmiendo al piso. El mismo Sir John Tenniel, ilustrador de Carrol, viajaria a Oxford para darle vida al sombrero de Alicia inspirándose en la figura de Theophilus.

Biosphere 2, un ecosistema cerrado tan perfecto e idílico que terminó en fracaso

La adversidad muchas veces es algo necesario, algo que si es aprovechado nos servirá para aprender y formar nuestro caracter. Quizás el mejor ejemplo de ésto es lo que ocurrió en Biosphere 2, un hábitat completamente cerrado creado por la Universidad de Arizona en 1987 con el fin de servir como ecosistema de investigación y vivarium de varias especies de plantas y árboles exóticos.

Si bien en el presente se utiliza para los fines anteriormente mencionados, a principios de los años 90 la instalación sirvió para un propósito de investigación científica pura: crear el primer ecosistema completamente cerrado. Desde los nutrientes hasta el oxigeno, la humedad y demás recursos serían creados y reciclados constantemente utilizando las costosas y complejas maquinarias y sistemas dentro de las instalaciones del complejo. La idea original era la de crear el hábitat perfecto, todos los parámetros medidos en tiempo real por avanzados sensores y regulados por complejos sistemas de control; dándole a los vegetales en el lugar la cantidad de nutrientes perfecta y asegurando la virtual inexistencia de plagas e insectos invasivos. De funcionar, se crearía un ecosistema aislado del mundo el cual podría servir como punto de partida para el desarrollo de ecosistemas en bases inter-planetarias o incluso la preservación de las especies vegetales en caso de una catástrofe ecológica a escala global.

Así fue, al menos durante los primeros años, las plantas y árboles que crecían dentro de B2 eran más voluptuosas, más grandes en incluso abundantes que sus pares en el resto de la tierra. Ciertamente ésta serie de ecosistemas cerrados que ocupaban 1,27 hectáreas eran un paraíso en la tierra, perfecto, sin adversidades ni problema alguno.

Pero algo comenzó a ocurrir, y en un principio ninguno de los científicos entendió el por qué. Los árboles se quebraban antes de madurar cayendo a tierra sin motivo alguno. Tras buscar varias respuestas la definitiva vino del análisis de la madera y las raíces de los mismos. Al haber crecido completamente guarecidos de los vientos, éstos árboles nunca desarrollaron raíces lo suficientemente arraigadas, y la madera de los troncos y ramas carecían de las denominadas maderas de compresión y tensión. Dichas maderas son los dos tipos de tejido especial desarrollados por las plantas leñosas en sus ramas principales y deformaciones de los troncos como respuesta a los efectos de la gravedad y del viento. Generalmente la madera de tensión es más común en los árboles de madera dura, es decir las angiospermas como pueden ser los robles; mientras que la madera de compresión hace lo mismo en los árboles de madera blanda es decir las gimnospermas como las coníferas. No obstante, no es exclusivo a unas y otras y distintos tipos de madera de reacción pueden ser observados en un mismo árbol. Ambas son un tipo de madera en la cual las células del tejido vegetal se alinean de manera no vertical, permitiendo al árbol contar con un soporte extra y una mayor capacidad de torsión así como soportar las fuerzas de tensión causadas por los vientos. De hecho, en la naturaleza las plantas leñosas utilizan en parte éste tipo de manera para por alinearse mejor ante el sol y recibir mayor cantidad de luz solar en sus hojas.

Tras una serie de investigaciones los científicos de la universidad descubrirían que la razón por la cual los árboles del hábitat crecían a un ritmo mucho mayor que el resto de los árboles en el exterior se debía al hecho que no generaban los distintos mecanismos de soporte y arraigo que permiten que los árboles no sólo vivan por cientos y miles de años, sino que además resistan fuertes vientos y tormentas.

Hoy en día B2 sigue en funcionamiento, aunque ya no como un sistema completamente cerrado, sino que se ha reorientado y convertido en una reserva de especies exóticas y amenazadas.

La policía antidisturbios que tomó sus tácticas de las cohortes romanas y por qué es un grave error

La Gyeongchalcheong. o policía nacional coreana antidisturbios, es una fuerza de control antidisturbios famosa por su riguroso entrenamiento y tácticas copiadas directamente de las cohortes romanas. La misma utiliza la cohesión de un grupo principal de choque que utiliza sus escudos para frenar el grueso de los manifestantes y luego subdivisiones que refuerzan al grupo principal o flanquean a los manifestantes para así lograr reducirlos. Utilizando tácticas con movimientos coordinados para expandir la formación y avanzar sobre el enemigo.

En el siguiente vídeo podemos observar un ejercicio de entrenamiento de dicha fuerza:

El error en la violencia

Si bien lo anterior puede a priori parecer algo acorde a la situación, sobretodo en un país que padece las manifestaciones más violentas en el mundo desarrollado, y en donde es común la utilización de bombas molotov y ataques a gran escala, como por ejemplo los realizados por los Hanchongryun, un grupo de estudiantes universitarios radicales pro-Corea del Norte, muy activo en el pasado, y el cual es famoso por arrojar cientos de bombas molotov contra la policía y también emplear formaciones de tipo cohorte, la ciencia, sin embargo, ha demostrado que para mantener el orden el enfrentamiento violento y la mano dura contra los manifestantes son la peor opción. En efecto, un acercamiento conciliador otorga mejores resultados. Por más lógico que ésto parezca, el pensamiento reinante durante el siglo XIX y gran parte del siglo XX en Occidente era que la turba era una “bestia salvaje” la cual debía ser domada para evitar mayores daños.

Durante las cuatro décadas finales del siglo XX varias ciudades de los Estados Unidos se vieron sumergidas en violentas manifestaciones raciales, muchas de éstas terminando con severos daños materiales y docenas de muertos. Fue entonces que movido por las 34 muertes y los cientos de millones de dólares en pérdidas materiales producto de los Disturbios de Watts en Los Angeles y otros disturbios menores como el de Newark y Detroit, el presidente Lyndon B. Johnson formó la Comisión Kerner la cual fue puesta a cargo del gobernador de Illinois, Otto Kerner. Entre los objetivos principales de ésta comisión se encontraba el de investigar científicamente cómo reducir la cantidad de muertes y la destrucción material durante los disturbios y manifestaciones. Una de las determinaciones más importantes de la misma fue el hecho de la importancia de la resiliencia colectiva en el comportamiento de los manifestantes. Fenómeno por el cual un grupo de personas, el cual se identifica a si mismo como unido por una causa, se vuelve cohesivo y extremadamente protector del grupo en si ante una adversidad inminente. Razón por la cual enviar grupos antidisturbios a chocar contra los manifestantes sólo empeora las cosas, ya que los manifestantes al ver a sus compañeros siendo atacados recurren a la violencia para rescatarlos y protegerlos, incluso muchas veces arriesgándose más de la cuenta y sacrificando su propia integridad.

Varias de las recomendaciones brindadas por la Comisión Kerner han sido implementadas en muchos países, y han probado ser muy útiles, por ejemplo, para reducir las confrontaciones con los hooligans en el Reino Unido.

La prueba nuclear espacial que destruyó tres satélites y dañó otros tres por error

Durante la Guerra Fría las súperpotencias militares buscaron utilizar su armamento nuclear en todo tipo de estrategias y escenarios, intentando implementar desde minas nucleares hasta demolición nuclear. Muy rápidamente se darían cuenta que, a diferencia de los escenarios de destrucción total, podían utilizar los efectos secundarios de las explosiones nucleares a gran altura para bloquear en un área considerable las comunicaciones tanto de radio como satelitales del bando contrario. Es así que la Unión Soviética y los Estados Unidos comenzaron a detonar bombas nucleares cada vez a mayor altura. La mayoría de estas pruebas tuvo lugar entre 1958 y 1962, y si bien en un principio se trató de pruebas atmosféricas, rápidamente comenzaron a detonarse armas nucleares en el espacio para determinar su utilidad en la destrucción de satélites. Una de estas pruebas fue la Starfish Prime, llevada a cabo en julio de 1962 por los Estados Unidos, en la cual un misil Thor transportó una bomba termonuclear W49 a 400 kilómetros de altura sobre la isla de Johnston en el océano pacífico y detonó el dispositivo con un rendimiento de 1,4 megatones.

La anterior fue la prueba nuclear más poderosa alguna vez llevada a cabo en el espacio, la misma causó la destrucción de dispositivos electrónicos en varias islas del océano Pacífico, sobretodo en Hawaii, desactivando el sistema telefónico de las islas, destruyendo cientos de lámparas del alumbrado público y miles de televisores. Sin embargo, los daños más costosos ocurrirían tiempo más tarde, ya que Starfish Prime creó un cinturón artificial de radiación mucho más intenso de lo esperado y el cual cruzaba las órbitas de los satélites Ariel, TRAAC, y Transit 4B, los cuales quedaron inoperables, y los satélites Cosmos V, Injun I y Telstar 1 los cuales sufrieron varios tipos de daños menores. Según los estudios del físico de la NASA Wilmot Hess el cinturón duró unos cinco años antes de ser disipado por el campo magnético terrestre, y la razón por la cual la explosión tuvo dicho efecto inesperado fue el que nadie pudo prever que electrones de alta energía podían quedar atrapados en la termopausa, el límite superior de la termosfera terrestre. Debemos tener en cuenta que lo anterior tuvo lugar en 1962, cuando la cantidad de satélites en órbita era muy reducida, de hecho el satélite de la Bell Labs dañado a causa de ésta prueba, el Telstar 1, fue el primer satélite de telecomunicaciones comercial en existencia. Si Starfish Prime hubiese sido llevada a cabo en los últimos veinte o treinta años los daños económicos y políticos hubiesen sido catastróficos e irrecuperables. Peor aun si tenemos en cuenta que la Estación Espacial Internacional y su tripulación se encuentra a ~410 Km de altura.

En el caso de los Estados Unidos sabemos que se hicieron 3 detonaciones a gran altura durante el programa Operation Argus, el cual buscaba crear cinturones de radiación para impedir las telecomunicaciones rivales; y 31 detonaciones a gran altura, 5 de éstas espaciales, como parte del programa Operation Dominic el cual se subdividió en subprogramas específicos como Operation Fishbowl (todas éstas pruebas espaciales).

Por fortuna las pruebas también tuvieron un efecto positivo, ya que ambas súperpotencias se dieron cuenta de que no podían continuar desafiándose unas a otras con detonaciones nucleares espaciales sin llegar a sufrir un efecto colateral no deseado y muy costoso en el futuro. Ésto llevó a que se firme el Tratado de prohibición parcial de ensayos nucleares en 1963, poniendo un fin a éste tipo de ensayos.

El efecto pecera
La razón por la cual la operación Fishbowl (pecera) se llamó de dicha manera no es aleatoria. Sino que se debe al fenómeno por el cual las explosiones nucleares forman esferas en el espacio. De ésto ya hemos hablado anteriormente.

La tumba de Sinaí, el punto de buceo más mortífero del mundo

En el Mar Rojo cerca de Dahab en la península de Sinaí, Egipto, existe una formación que a simple vista, al menos desde la superficie, no resulta muy distinta del entorno que la rodea. Sin embargo, éste aparentemente calmo parche de agua cuya única diferencia con su entorno es un color un poco más oscuro, es en realidad la región de buceo más peligrosa del mundo. Una traicionera e intrincada caverna vertical de alrededor de 110 metros de profundidad y 40 metros de ancho que ha terminado con la vida de más de 100 buceadores, o al menos eso es lo que dice la lista oficial, extraoficialmente se cree que el número es mucho mayor. Para poder entrar al mismo se requiere de un instructor y guía, y acreditación de tener experiencia previa buceando en al menos 30 metros. Éstos requerimientos y el hecho de que se puede ingresar al mismo fácilmente desde la costa fueron factores que llevaron a que muchas personas ingresaran a la formación de manera irregular, razón por la cual no se conoce el número exacto de muertes. Para remediar los ingresos irregulares la policia egipcia debió instalar una presencia policial las 24hs.

El motivo por el cual esta formación, un agujero azul, es tan mortífera se debe a su estructura laberíntica, y sus múltiples túneles tanto verticales como horizontales. Uno de éstos, el preferido por los buceadores más veteranos y experimentados, es El Arco un pasaje de unos 26 metros ubicado a 56 metros de profundidad que conecta el interior del agujero azul con el mar abierto. No obstante, recorrerlo es extremadamente peligroso debido a las corrientes que llegan a través del extremo del pasaje conectado al mar, su ángulo de ingreso y la casi total oscuridad que rodea a los buceadores.

La razón por la cual se ha denominado a éste agujero azul como “la tumba de Sinai” es tristemente obvia, el lecho de la formación es un cementerio, y si bien la mayoría de los cuerpos son generalmente recuperados, hay algunas secciones de difícil acceso donde la recuperación de cuerpos es imposible:

Si bien es común que buceadores altamente experimentados intenten llegar a la parte más profunda del mismo y sus cavernas, factores como la poca luz, la estructura laberíntica y la narcosis de nitrógeno son muchas veces una irremediable combinación de causas que llevan a que incluso expertos sufran accidente fatales. Ésto quedó documentado en el año 2000 cuando el buceador de fama internacional Yuri Lipski perdió su vida en el fondo de la formación. Lipski poseía una cámara montada en su cabeza, la cual fue recuperada por las personas que retiraron su cuerpo tiempo más tarde. En la filmación pueden verse los últimos minutos de vida del deportista, completamente desorientado y perdido.

Por respeto a la familia del buceador el momento de su muerte fue editado del video, no obstante, sólo podemos imaginar lo desesperante que es estar en dicha situación.

Cómo la última tribu sin influencia externa del océano índico logró sobrevivir al tsunami del 2004

Los sentineleses son una de las últimas tribus sin contactar en nuestro planeta, y la última del Océano Índico sin ningún tipo de contacto alguno, su idioma permanece sin clasificar y es completamente distinto al de sus vecinos más cercanos, los jarawa, su sociedad está basada en la caza, la pesca y la recolección de plantas y nada es sabido sobre sus mitos y leyendas. De hecho ni siquiera sabemos cómo se llaman a si mismos, ya que el gentilicio de sentineles proviene del nombre de la isla en la que habitan, bautizada como isla North Sentinel por los británicos. Isla perteneciente al grupo de islas ubicadas en la bahía de Bengala conocido como islas Andamán, donde en cada una habitan distintas tribus.

Junto con los ya mencionados jarawa, habitantes de la isla Adamán del sur y cuyo contacto con los extranjeros se limita a intercambiar objetos, los sentineleses son la tribu más aislada de la región. Si bien en un momento podríamos llegar a pensar que tal aislamiento es un cruel destino, sólo basta con ver lo que ocurrió con los onges, habitantes de la isla Rutland, quienes fueron asimilados hace ya más de un siglo y cuya sociedad ha colapsado por completo, necesitando de subsidios del gobierno de la India para sobrevivir y cuya población es casi siete veces menor en comparación a los tiempos anteriores a la asimilación.

Ésta falta de contacto es la razón por la cual en el 2004, año en el que tuvo lugar uno de los peores terremotos y tsunamis en la historia moderna, con más de 230 mil muertes y cientos de miles de heridos, el gobierno de la India pensó que lo peor había ocurrido con los sentineleses y los jarawa ya que sus islas se hallan relativamente cerca del epicentro y en el curso de la ola. Sin embargo, tres días después de ocurrida la tragedia, cuando la guardia costera envió helicópteros a investigar que había sido del destino de éstos pueblos, los guardacostas no tardaron en avistar a un sentineles, quien desafiaba al helicóptero apuntándole con su arco.

Aliviados y asombrados, inmediatamente se dirigieron hacia la isla de los jarawa, más abiertos al contacto. Allí descubrirían algo asombroso, ni un sólo jarawa había perecido durante el tsunami. Con un contacto reducido y poca confianza hacia los extranjeros, llevó cierto tiempo descubrir cómo fue que ambas tribus lograron salvarse de la ola. Ésta poca confianza por parte de los jarawa es comprensible, antiguamente una cultura pacífica fueron diezmados por los marinos británicos, quienes utilizaron su isla como base de aprovisionamiento disparando a cualquier jarawa que se acercase sin mediar palabra alguna. Los tiempos modernos no han sido mejores, en 1999 una epidemia de sarampión, llevado a la isla por un oficial del gobierno de la India, causó la muerte del 10% de la población jarawa.

Descifrar éste acertijo fue la tarea de Sophie Grig y los investigadores de Survival International, quienes establecieron contacto con varios jarawa hasta contactarse con Ashu, un jarawa capaz de comunicarse en hindú y acostumbrado al contacto con extranjeros. Éste les relataría la historia sobre cómo, cuando sintieron la tierra temblar, inmediatamente fueron a ver a los pescadores de su tribu, quienes le comunicaron a los jefes que el “mar había desaparecido” (un efecto común de los tsunamis es que antes de la ola receda el nivel de agua en la costa considerablemente). Sabiendo a partir de canciones que se pasaron de generación en generación que cuando la “tierra se enoja” y “el mar desaparece” la tribu debe esconderse de los espíritus de la tierra en el bosque de Balughat, el cual es el punto más alto de su isla, fue entonces que toda la tribu corrió hacia dicha aérea, quedando así completamente a salvo cuando la ola golpeó la isla.

Tras entrevistar a los onge descubrirían un mismo patrón, no en una canción, sino en un cuento muy importante en su cultura, el cual relata una historia en la cual la tierra tiembla y luego una pared de agua viene a llevarse a los pobladores. Razón por la cual intuitivamente 96 Onge se salvaron del tsunami al sentir el terremoto y correr hacia la parte más elevada de su isla.

En efecto, fue la tradición oral y las canciones de sus ancestros lo que salvó a éstas tribus despectivamente consideradas como primitivas por muchos.

Nota: reemplazada la palabra instintivamente por intuitivamente.

Cuán lejos está la estrella más caliente del universo de la mayor temperatura físicamente posible

La estrella considerada como la “más caliente del universo” ha cambiado veces en los últimos años, sobretodo a medida que nuevos radiotelescopios han sido puestos en funcionamiento. Actualmente Eta Carinae ubicada constelación de la Quilla es considerada como la estrella con la mayor temperatura de superficie del universo conocido, la misma posee un radio unas 180 veces mayor al radio de nuestro Sol y una temperatura en su superficie que va entre los 36.000 y 40.000 Kelvin (o unos 35.726,85°C a unos 39.726,85°C). Para darnos una noción de las cifras con las que estamos trabajando, la temperatura de superficie de nuestro sol es de unos 5.777K, es decir, 5.503,85°C. Si bien podemos llegar a creer que Eta Carinae es la estrella más grande conocida, esto no es así, ya que la más grande es VY Canis Majoris, con un radio unas 2000 veces mayor a la de nuestro Sol. Eta Carinae es una estrella de clasificación espectral O, sólo un 0.00003% de las estrellas en el universo corresponden con éste tipo.

Ahora queda preguntarnos, por qué entonces no es VY Canis Majoris la estrella con la mayor temperatura del universo, la respuesta tiene que ver con su conformación. VY Canis Majoris es una estrella roja hípergigante con una masa solar que se estima está entre los 17±8 M☉ (1 M☉ equivale a nuestro Sol), mientras que Eta Carinae es una hípergigante, hípermasiva azul con una masa que se estima está entre los 30M☉ a los 80M☉. Las estrellas azules son estrellas masivas y mucho más densas, por lo que queman su material mucho más rápido que las estrellas rojas y se consumen de manera mucho más rápida, generando niveles de temperatura muchísimo mayores pero, como consecuencia, muriendo muy rápido en comparación y de manera violenta al convertirse en súpernovas (aunque ciertos modelos actuales predicen que Eta Carinae muy posiblemente se convierta en un agujero negro). De hecho, el color visible de las estrellas es un fenómeno físico que viene dado precisamente por la temperatura de su superficie.

La mayor temperatura físicamente posible

Entonces nos queda preguntar, qué tan lejos está la temperatura en la superficie de Eta Carinae de la mayor temperatura posible. La respuesta es mucho, muchísimo. La mayor temperatura teórica que los modelos actuales soportan es la denominada como Temperatura de Planck. Ésta temperatura representa un límite fundamental ya que en éste punto la fuerza gravitacional se vuelve tan fuerte como las otras fuerzas fundamentales. En otras palabras, es la temperatura del universo durante los primeros picosengundos del Big Bang. Su valor: 1,417×1032 K (un poco menos si se tiene en cuenta la teoría de cuerdas).

Pero las estrellas quizás no sean la mejor opción de comparación, ya que hay objetos muchísimo más calientes que una estrella como la formación del núcleo de neutrones de una súpernova tipo II, que puede alcanzar 10×104 K. Sin embargo, la temperatura más alta alguna vez generada ocurrió en la tierra, en el LHC, Gran colisionador de hadrones, más precisamente en el detector ALICE diseñado para estudiar colisiones que producen plasma de quarks-gluones. El experimento en cuestión tuvo lugar en el 2010 cuando los científicos del acelerador de partículas colisionaron los núcleos de átomos de oro. La temperatura alcanzada fue de unos 5,5×1012 K

Arriesgando la vida para probar las máquinas voladoras de Leonardo da Vinci

En el año 1010, siglos antes que Leonardo da Vinci naciera, Eilmer de Malmesbury un monje obsesionado con la historia de Dédalo e Icaro, pasó estudiando durante años el vuelo de los pájaros. Convencido de que ya había logrado descifrar los secretos del vuelo (y de hecho lo hizo) construyó un ala rígida, se subió al campanario de su monasterio y saltó al vacio, logrando planear por casi 300 metros y saliendo casi ileso, sólo se quebró una pierna. De ésta historia ya hemos hablado en detalle en éste artículo.

Incluso siglos antes de que Eilmer de Malmesbury se arrojara al vacío, Abbás Ibn Firnás, otro hombre interesado en la ciencia del vuelo, pero esta vez en Córdoba, España y en el año 875, ideó el primer paracaídas funcional de la historia el cual también tenía elementos de parapente. Tenía 65 años y tras confeccionar un armazón de madera recubierto en seda con un volumen interior para capturar aire se subió a una torre y se arrojó al vacío ante una multitud que él mismo había invitado. Firnás logró permanecer en el aire durante varios minutos, y si bien al tocar tierra se quebró las dos piernas, el intentó fue todo un éxito. El intrépido inventor siguió arrojándose en sus paracaídas/parapente hasta bien pasados los 70 años.

Pero lo anterior no quita merito a Leonardo, ya que es casi imposible que el florentino más famoso contara con información alguna sobre éstos dos hombres. Además, el trabajo de Leonardo, realizado principalmente durante su estadía en Milán, fue mucho más científico y se enfocó en el concepto de resistencia del aire. Además Leonardo no se contentó con simplemente sobrevivir a la caída, Leonardo quería controlar sus máquinas, y el mayor trabajo fue justamente en diseñar los sistemas de control de vuelo. En fin, Leonardo nunca pudo probar sus invenciones, pero gracias a valientes modernos que las construyen al pie de la letra y las prueban poniendo en riesgo su propia vida, vemos que sí, en efecto, muchas de las máquinas voladoras del renacentista más famoso funcionan. Más importante aun es que gracias a los meticulosos documentos que el florentino mantuvo durante su vida, contamos con planos para reconstruir dichas invenciones.

El planeador híbrido

El planeador de da Vinci es un concepto muy interesante, ya que no es un planeador per se sino que se trata de un parapente con elementos de paracaídas (y en el video esto se puede ver perfectamente), y además posee una cola para poder controlar la dirección del vuelo. El mismo fue diseñado a partir del milano, un ave rapaz muy común en Italia.

El paracaídas

Construido y probado pro Olivier Vietti con la ayuda de Eric Viret y Eric Laforge ésta es una réplica exacta del paracaídas piramidal ideado por el florentino. Una prueba de bastante riesgo ya que los diseñadores del mismo buscaron ser fieles a la época de Leonardo y utilizaron materiales como disponibles en Florencia durante el siglo XVI.

La fase más peligrosa de la prueba no es el tramo de descenso de la caída en si, sino la abertura del paracaídas. Al estar construido con un armazón rígido, si por alguna razón el paracaidista hubiese llegado a desestabilizarse éste corría el riesgo de haber quedado enrollado entre las cuerdas, lo que le hubiese impedido liberar el paracaídas secundario y moderno que llevaba por seguridad.

Lo bueno de éstos dos hombres es que probaban ellos mismos sus invenciones, a diferencia de Jean Pierre Blanchard, quien utilizaba perros para probar sus diseños de paracaídas en el siglo XVIII.

Artículos relacionados
El sello que protegió la tumba de Tutankamón durante 3.245 años.
El mecanismo de Antiquerra, la computadora más antigua de la historia.
Sagami, el festival japonés donde remontan cometas de 1 tonelada.
La Montgolfière, el primer vuelo humano de la historia.